Daily Bulletin


The Conversation

  • Written by The Conversation Contributor
imageAlbert Einstein wrestled with unifying gravity with electromagnetism and quantum mechanics until his dying days.Oren Jack Turner/Wikimedia Commons

This month marks exactly 100 years since Albert Einstein submitted the first paper fully describing the general theory of relativity. It was both breathtaking and revolutionary.

Simply stated, gravity is a geometric property of spacetime that is allowed to be curved. It was like looking at Newton’s world through the bottom of a glass.

General relativity is based on Einstein’s field equations, which describe the relation between the geometry of a four-dimensional description of spacetime, and the energy–momentum contained in that spacetime.

Spacetime curvature is caused by mass; the more mass, the more spacetime is curved. This curvature can induce deflections or delays in the propagation of light.

Even close to home, our sun – not that massive as stars go – will alter the path of light near it. Newton’s theory predicts a deflection of light of 0.875 seconds of arc at the limb of the sun, whilst relativity predicted a deflection of 1.75 seconds of arc. Observations during total solar eclipses of background star fields confirmed Einsteins value.

Even had Einstein died shortly after his work on general relativity, he would still be regarded by many today as the greatest physicist who ever lived, and perhaps even the greatest scientist.

imageThe first part of Einsteins defining GTR paper: Feldgleichungen der Gravitation (The Field Equations of Gravitation) Preussische Akademie der Wissenschaften, Sitzungsberichte, 1915

Towards a unified field theory

However, whilst he continued to work on many problems up until his death in 1955, he is regularly described as failing in one particular area: the unified field theory.

From the 1920s, Einstein tried to develop a unified theory that melded general relativity and electromagnetism, representing the only two forces known to exist.

Such a theory would describe a single field in which all forces are mediated and the properties of all particles – which at the time were only electrons and protons, with the neutron not discovered until 1932 – could be deduced.

Other players in the quest appeared. Theodor Kaluza showed that if spacetime had five dimensions, then four dimensions could reflect general relativity, and one could represent electromagnetism. In the burgeoning quantum world of the mid-1920s, Oskar Klein shrank Kaluza’s 5th dimension to be compact, in a sense offering a quantum mechanical interpretation.

Einstein drew upon other work if it could help his cause. He even looked at variations to the successful mathematical basis of general relativity. It is widely reported that he did not support quantum mechanics, but promoted it (suffered it?) being a derivative of an eventual unified theory.

Strong developments

In a way, his mathematical focus hindered his acceptance of ongoing, major discoveries in physics like quantum mechanics. The discovery of two new forces in addition to gravity and electromagnetism – the strong and weak nuclear forces – also made his work of a unified field based only on two forces unattainable.

Protons and neutrons in atomic nuclei had to be held together by a strong attractive force. Mesons, the force carrying particles for the strong nuclear force were discovered experimentally in 1947. Enrico Fermi in 1933 tried to explain beta decay, which was a radioactive transmutation between protons and neutrons. It was related to a weak nuclear force.

Eventually Sheldon Glashow, Steven Weinberg, and Abdus Salam announced a unified theory of electromagnetism and the weak nuclear force in 1968. Their electroweak theory postulated the weak force carrier particles – W and Z bosons – which were then discovered in the 1980s.

We now know that all forces apart from gravitation are related mathematically, albeit with some differences in phenomena.

imageThe rich galaxy cluster Cl 0024+17. Blue streaks near the centre are smeared images of very distant background galaxies. Their light is being bent and magnified by the intervening cluster, in an effect called gravitational lensing.

Todays efforts at a unified field

The major pathway to unification over the last three decades has been string theory. Two forms of string theory have ten and twenty one dimensions respectively. In a strange parallel, the miniaturisation or compactification of many dimensions in string theory is the modern day equivalent of the quantisation of a 5th dimension by Klein.

Despite little predictive power, and critics attacking its relation to a multiverse, no other areas towards unification theory appear as fruitful as string theory.

For thirty years a unified theory proved a worthy opponent of Einstein. He worked on it even on his penultimate day in Princeton Hospital. J. Robert Oppenheimer was later both unflattering,

During all the end of his life, Einstein did no good. He turned his back on experiments […] to realise the unity of knowledge.

…and envious,

Of course, I would have liked to be the young Einstein. This goes without saying.

A consensus seems to exist: in later years, Einstein worked with mathematical blinkers, immune to relevant discoveries, and unable to change his method of investigation.

As James Joyce wrote:

A man of genius makes no mistakes. His errors are volitional and are the portals of discovery.

Failure and mistake are harsh words. They are often the precursors of discovery. The unified field was Einstein’s nemesis for a variety of reasons. Despite this, many envied his early genius and we should focus on this especially in this centenary year of the greatest physics revolution.

Glen Mackie does not work for, consult, own shares in or receive funding from any company or organization that would benefit from this article, and has disclosed no relevant affiliations beyond the academic appointment above.

Authors: The Conversation Contributor

Read more http://theconversation.com/einsteins-folly-how-the-search-for-a-unified-theory-stumped-him-to-his-dying-day-49646

Writers Wanted

The Best Android tools and Utility Apps

arrow_forward

How to Find the Best SEO Services Company That Offers Guaranteed Results

arrow_forward

The Conversation
INTERWEBS DIGITAL AGENCY

Politics

Prime Minister Interview with Ben Fordham, 2GB

BEN FORDHAM: Scott Morrison, good morning to you.    PRIME MINISTER: Good morning, Ben. How are you?    FORDHAM: Good. How many days have you got to go?   PRIME MINISTER: I've got another we...

Scott Morrison - avatar Scott Morrison

Prime Minister Interview with Kieran Gilbert, Sky News

KIERAN GILBERT: Kieran Gilbert here with you and the Prime Minister joins me. Prime Minister, thanks so much for your time.  PRIME MINISTER: G'day Kieran.  GILBERT: An assumption a vaccine is ...

Daily Bulletin - avatar Daily Bulletin

Did BLM Really Change the US Police Work?

The Black Lives Matter (BLM) movement has proven that the power of the state rests in the hands of the people it governs. Following the death of 46-year-old black American George Floyd in a case of ...

a Guest Writer - avatar a Guest Writer

Business News

How to Find the Best SEO Services Company That Offers Guaranteed Results

As a business owner, you have to be strategic about how you’ll be able to reach your target market. That is why entrepreneurs implement various marketing tactics to reach their goals. With today...

News Co - avatar News Co

Top Reasons Why Your Business Needs SEO

SEO is crucial for the ranking of a website. You may think that SEO offers greater searchability while it can do more than this. The most cost-effective tool for the survival of smalls businesse...

News Co - avatar News Co

Nisbets’ Collab with The Lobby is Showing the Sexy Side of Hospitality Supply

Hospitality supply services might not immediately make you think ‘sexy’. But when a barkeep in a moodily lit bar holds up the perfectly formed juniper gin balloon or catches the light in the edg...

The Atticism - avatar The Atticism



News Co Media Group

Content & Technology Connecting Global Audiences

More Information - Less Opinion