Daily BulletinHoliday Centre

The Conversation

  • Written by Arne Ittner, Postdoctoral research fellow, UNSW Australia

Most people have heard of Alzheimer’s disease, the most common form of dementia. The disease has no cure and few, but inefficient, treatments. Despite their best efforts, doctors and researchers still don’t know the sequence of brain changes that causes this debilitating disorder.

Our new study challenges a commonly held view of how Alzheimer’s disease develops, and suggests a new clinical angle to reduce its impact.

So common, still no cure

Alzheimer’s disease is the most common form of dementia, characterised by progressive loss of cognition – our ability to learn, remember and plan our lives. Over 35 million people are currently diagnosed with Alzheimer’s disease worldwide, with figures set to increase significantly due to an ageing population.

Unfortunately, we have no cure and current therapies are limited to very modest symptomatic relief. Therefore, there is a great need for understanding how Alzheimer’s disease develops, and what the underlying processes are in order to develop effective treatments.

Changes to proteins cause brain cell death

After death, the brains of Alzheimer’s disease patients are typically found to contain two types of abnormal structures when viewed under the microscope: plaques and tangles. Plaques contain a protein known as amyloid beta, and tangles consist of a protein called tau.

image Light micrograph of brain tissue stained with a silver impregnation. A plaque (upper centre) and a pyramid-shaped neuron with a tangle (lower left) can be seen. Both lesions are typical in Alzheimer’s disease. from www.shutterstock.com

Tau is a protein that normally resides within brain cells (also called neurons). However, tau in Alzheimer’s disease brain tangles is not the same as tau in normal brains.

Tau in tangles has a unique structure, and is called phosphorylated because it carries extra molecules known as phosphates attached to the main protein backbone. This changes the way the protein behaves inside the neuron.

The prevailing belief in Alzheimer’s disease research is the addition of phosphate groups to create phosphorylated tau promotes disease development.

Our recent research challenges this assumption.

Unexpected protection against Alzheimer’s Disease

We recently uncovered a new and surprising clue as to the role of tau and phosphates in Alzheimer’s.

Our first piece of evidence came from looking at genes. We found a gene that unexpectedly protected mice against developing Alzheimer’s. We also saw that levels of the protein that results from this gene gradually decrease in the human brain as Alzheimer’s progresses.

Using a combination of experiments in cultured mouse neurons, we then studied exactly how this gene works. It became clear the gene influences the way phosphate groups are attached to tau. By creating a specific pattern of phosphorylation of tau, the gene mediated its protective effects.

We also found when mice were given tau with this specific pattern of attached phosphate groups, they were protected from developing Alzheimer’s disease.

This research led us to change our thinking about the molecular events that occur in Alzheimer’s disease.

We found a specific pattern of tau phosphorylation can protect against death of neurons in a mouse model of the disease. In other words, a version of phosphorylated tau that is protective against Alzheimer’s disease can form in the brain. This challenges the common view among researchers that tau phosphorylation only causes toxic effects and is the “villain” in disease progression.

New target for prevention and treatment

These findings have implications for prevention and treatment of Alzheimer’s disease.

When we increased levels of protective tau, dementia-like memory changes were largely prevented in mice predisposed to developing Alzheimer’s. The next question is to see whether this specific tau modification can act in a protective way at even later stages of disease.

Further exploration may result in a new treatment approach that involves increasing the activity of the gene linked to forming protective tau at an advanced stage of Alzheimer’s. This is important as many patients are diagnosed with dementia when considerable memory and neuronal loss has already occurred.

We consider there are two approaches to increase protective tau. One of them uses vehicles for gene delivery, while the other aims to develop drugs that can increase formation. Our team is planning to follow both strategies as we move towards the development of possible new treatments for humans.

Considering the multitude of possible modifications of tau protein that exist, dissecting the functions of each of these does seem a tedious task to many. However, it may yet reveal other remarkable insights into dementia and lead us to new treatment strategies that are so urgently needed.

Authors: Arne Ittner, Postdoctoral research fellow, UNSW Australia

Read more http://theconversation.com/how-the-brain-changes-in-alzheimers-disease-a-new-view-68969

INTERWEBS DIGITAL AGENCY

The Conversation

Politics

Closing the Gap Statement to Parliament

Mr Speaker, when we meet in this place, we are on Ngunnawal country. I give my thanks and pay my respects to our Ngunnawal elders, past, present and importantly emerging for our future. I honour...

Scott Morrison - avatar Scott Morrison

Prime Minister Interview with Alan Jones

ALAN JONES: Prime Minister, good morning.    PRIME MINISTER: Good morning, Alan.    JONES: I was just thinking last night when we're going to talk to you today, you must feel as though you've ...

News Company - avatar News Company

Prime Minister Bridget McKenzie press conference

PRIME MINISTER: Good afternoon everybody. The good news is that the Qantas flight is on its way to Wuhan and I want to thank everybody for their cooperation, particularly the Chinese Government as...

Scott Morrison - avatar Scott Morrison

Business News

Top 5 Green Marketing Ideas for Your Eco-Friendly Small Business

According to studies, about 33 percent of consumers prefer buying from brands that care about their impact on the environment. This is good news for anyone running an eco-friendly business. It’s a...

Diana Smith - avatar Diana Smith

Choosing the Right Coworking Space For Your Business

As the capital of Victoria in Australia, Melbourne is inhabited by millions of people and is known as one of the most liveable cities in the world. The latter is due to the city’s diverse community...

Sarah Williams - avatar Sarah Williams

What Should You Expect from A Carpentry Apprenticeship?

Those wanting to pursue a career in woodwork, whether it be to make furniture, construct buildings or repair existing wooden structures, will have to first commence a carpentry apprenticeship. This ...

News Company - avatar News Company

Travel

Travelling With Pets? Here Is What You Should Know

Only a pet parent can understand the dilemma one experiences while planning a vacation. Do you leave your pets at home?  Will you get a pet sitter or someone to take care of them while you are away?...

News Company - avatar News Company

How to Be a Smart Frugal Traveller

You are looking through Instagram, watching story after story of your followers overseas at a beach in Santorini, walking through the piazza in Italy, and eating a baguette in front of the Eiffel ...

News Company - avatar News Company

HOW TO PREPARE FOR YOUR GRADUATION TRIP

Graduation is the stage of life when a student receives the rewards of hard work of years. It must have taken sleepless nights and tiring days to achieve the task. Now, as you have received your cov...

News Company - avatar News Company

ShowPo