Daily Bulletin

Men's Weekly

.

  • Written by Richard Banati, Chair professor, Australian Nuclear Science and Technology Organisation

Shearwaters are migratory marine birds that travel in a figure-of-eight pattern between the coasts of Siberia and Japan to Tasmania.

Placing one of the undistinguished grey feathers from a shearwater into the brilliant light of the X-ray fluorescence microscopy beam reveals something unexpected. We see intricately patterned deposits of chemical elements that tell the story of how a feather grows.

Among other findings, the images show strikingly regular bands containing zinc. There are roughly the same number of bands as the estimated number of days of feather growth.

Different from simple feather growth bars, these patterns were not known before our study, published this month.

image Three breast feathers from three individual Streaked Shearwater birds (Calonectris leucomelas), scanned simultaneously in high resolution X-ray fluorescence microscopy. Regular banding of the element zinc can be seen along the length of the feathers. Nature Scientific Reports, CC BY

Like the annual growth rings of trees, birds’ feathers lay down growth bars during their moult. (Moulting is the process of shedding old feathers, making way for new ones to grow.)

While bars simply show growth, the patterns of chemical elements tell us about the bird’s life during the growth period of the feather. They can indicate environmental exposures in a bird population, perhaps before impacts such as illness and death are clear.

We think the zinc banding may be a natural diurnal (daily) time stamp locked up within the feather. If confirmed, it’s a finding that may be applicable for retrospective dating of the occurrence of stressful events – for example, the temporary exposure to environmental contaminants such as heavy metals – during the period when birds grow new feathers.

In addition to zinc, other elements detected in feathers include calcium, bromine, copper and iron, each with its own unique pattern of distribution.

image Photographic image [A] and high resolution X-ray fluorescence microscopy images [B-F] in a breast feather from a Flesh-footed Shearwater (Ardenna carneipes); [B] reconstructed Compton scatter (as a density measure) ; [C] calcium distribution; [D] bromium distribution; [E] copper distribution; [F] iron distribution; Nature Scientific Reports, CC BY

The team, including field researcher Jennifer Lavers, analysed feathers painstakingly sampled from remote locations in Japan, as well as Lord Howe Island and New South Wales, and complemented by feathers from the Australia Museum collection in Sydney.

The bulk of the work investigated feathers from three species of shearwaters who migrate more than 60,000km over open ocean each year, to and from their breeding areas.

Foraging across huge areas, shearwaters are important indicators of environmental health. As described by Nobel Laureate and author Peter Doherty in his book Sentinel Chickens:

Birds of all kinds are recruited by humans to help us interpret changes in our increasingly challenged and unpredictable world. These wonderful creatures continually sample the atmosphere, oceans, fields and forests, signalling toxic and environmental dangers that threaten all vertebrates.

Studying the population health of our feathered fellow creatures might be translatable into early warning signs for humans.

Observed patterns of chemical elements are also useful in a more fundamental scientific sense, as they open a window onto the dynamics of how feathers grow. It’s an example of “topobiology”, a term that describes the complex growth and regulation processes that take place as a few stem cells develop into an organ or structure such as a feather.

image Models of pattern formation in feathers. The bands of zinc may be due to mixed stem cells known as ‘follicular cells’ growing feathers over a period of around 30 days [A], or regular systemic pulses of changed zinc concentration [B] Nature Scientific Reports, CC BY

Developmental biology is usually studied under the highly controlled conditions of a laboratory experiment. However, the current study shows that sensitive markers of development and health can also be applied to samples collected in field studies.

The chemistry of feathers might become a tool for watching our environment.

Authors: Richard Banati, Chair professor, Australian Nuclear Science and Technology Organisation

Read more http://theconversation.com/hidden-feather-patterns-tell-the-story-of-birds-78529

Business News

Manhari Founder, Maddy Gupta, urges businesses to capitalise on the rising value of metals

Old and unwanted equipment and business assets are often worth far more than they appear particularly those containing valuable metals. Precious metals, led by gold and silver reaching record highs...

Daily Bulletin - avatar Daily Bulletin

Qualities to Check in an NDIS Provider

Everyone wants to live life with independence and dignity. For people with disabilities, achieving this often requires the right support. This is where NDIS providers play an important role. These pro...

Daily Bulletin - avatar Daily Bulletin

How Thorough Component Inspections Protect Your Supply Chain from Costly Failures

In the modern world, where manufacturing has become highly interconnected, the weakest components of the supply chain can only make the chain as strong as it is. One defective component might cause ...

Daily Bulletin - avatar Daily Bulletin

Speed Dating For Business