Daily Bulletin


The Conversation

  • Written by The Conversation
imageThe beauty of stained glass – all down to electron oscillations.LoggaWiggler

For centuries, artists mixed silver and gold powder with glass to fabricate colorful windows to decorate buildings. The results were impressive, but they didn’t have a scientific reason for how these ingredients together made stained glass. In the early 20th century, the physicist Gustav Mie figured out that the color of a metal nanoparticle is related to its size and the optical properties of the metal and adjacent materials.

Researchers have only recently figured out the missing piece of this puzzle. Medieval glass workers would be surprised to find out they were harnessing what scientists today call plasmonics: a new field based on electron oscillations called plasmons.

Concentrating light

Plasmonics demonstrates how light can be guided along metal surfaces or within nanometer-thick metal films. It works like this: on an atomic level, metal crystals have a very organized lattice structure. The lattice contains free electrons, not closely associated with the metal atoms, that interact with the light that hits them.

imageSimplified sketch of electron oscillations (plasmons) at the metal/air interface. Orange and yellow clouds indicate regions with lower and higher electron concentration, respectively. Arrows show electric field lines in and outside of the metal.Hans-Peter Wagner and Masoud Kaveh-Baghbadorani, CC BY-ND

These free electrons collectively start to oscillate with respect to the fixed position of positively charged nuclei in the metal lattice. Like the density of air molecules in a sound wave, the electron density fluctuates in the metal lattice as a plasmon wave.

Visible light, which has a wavelength of approximately half a micrometer, can thus be concentrated by a factor of nearly 100 to travel through metal films just a few nanometers (nm) thick. That’s 1,000 times smaller than a human hair. The new mixed light-electron-wave-state empowers intense light-matter interactions with unprecedented optical properties.

What can plasmonics do?

Plasmonics could revolutionize the way computers or smartphones transfer data within their electronic integrated circuits. Data transfer in current electronic integrated circuits happens via the flow of electrons in metal wires. In plasmonics, it’s due to oscillatory motion about the positive nuclei. Data transfer is therefore more time-consuming in the old technology. Since plasmonic data transfer happens with light-like waves and not with a flow of electrons (electrical current) as in conventional metal wires, the data transmission would be superfast (close to the speed of light) – similar to present glass fiber technologies. But plasmonic metal films are more than 100 times thinner than glass fibers. This could lead to faster, thinner and lighter information technologies.

Surface plasmons also are exceptionally sensitive to any material next to the metal film. A low concentration of atoms, molecules or bacteria bound to the metal surface can change the property of its plasmons. This feature can be used for biological and chemical sensing at extremely low concentrations – for instance, to examine polluted water.

If properly designed, multilayers of plasmonic metal/insulator nanostructures form artificial metamaterials, where the Greek word “meta” means “beyond.” Unlike any other material in nature, these metamaterials have a negative index of refraction. That’s a measure of how much light changes its direction when it enters a transparent insulator. Insulators, including glass, have a positive refractive index; they bend light that enters at a certain angle closer to perpendicular to the insulator surface.

imageLight changes its direction when it enters a transparent insulator with positive refractive index or a metamaterial with negative refractive index.Hans-Peter Wagner and Masoud Kaveh-Baghbadorani, CC BY-ND

In contrast, multilayered metamaterials bend light to the “opposite” direction. This fascinating property can be used to cloak objects by covering them with a metamaterial wrap. The foil guides the light smoothly around the object instead of reflecting it. Almost unbelievably, the cloaked object becomes invisible.

Other applications include optical superlenses with significantly higher resolution compared to regular optical microscopes. They could allow scientists to see objects as small as about 100 nm in size. That’s about one-tenth as big as a typical germ.

A few proof-of-principle optical cloaks and superlenses do exist. But high resistivity losses in the metal layers which convert the light-electron-wave energy into heat currently limit the feasibility of many applications.

imageSimplified sketch of a plasmonic metal/organic/semiconductor nanowire heterostructure. The emission from the nanowire generated by the exciting laser beam is used as an energy pump to compensate for resistivity losses in the metal shell. An organic spacer layer of few 10 nm thickness is inserted to control this energy transfer.Hans-Peter Wagner and Masoud Kaveh-Baghbadorani, CC BY-NC-ND

Manufacturing plasmonic nanowires

High resistivity losses are the major issue with plasmonics. To overcome these limitations, we design and fabricate unique plasmonic metal/organic/semiconductor nanowire heterostructures. Our goal is to excite the semiconductor nanowires with an external light source, then use the internal radiation in the nanowires as an energy-pump source to compensate for metallic losses. This way, the nanowires couple light energy in concert with the light-electron-oscillations to the metal film, thus restoring the amplitude of the damped plasmon wave.

imageDr. Hans-Peter Wagner, right, and his doctoral student Masoud Kaveh-Baghbadorani in the organic molecular beam deposition (OMBD) laboratory, Department of Physics, University of Cincinnati.Jay Yocis University of Cincinnati, CC BY-ND

We use the organic molecular beam deposition (OMBD) method to coat the semiconductor nanowires with metal/organic multilayers. In the OMBD chamber, organic and metal materials reside in heatable cylindrical cells. We evaporate both organic molecules and metal atoms in heated cells at ultra-high vacuum (which is hundreds of billion times lower than atmosphere pressure). Then we direct the molecular and atom beams we have produced toward the semiconductor nanowire sample. The thickness of the resulting deposited film on the nanowire is controlled by mechanical shutters at the cell openings.

imageTransmission electron microscope (HRTEM) image of a GaAs-AlGaAs core-shell nanowire coated with nominally 10 nm aluminum quinoline and a 5 to 10 nm thick gold cluster film on top.Melodie Fickenscher (Advanced Materials Characterization Center College of Engineering and Applied Science) University of Cincinnati, CC BY-ND

The energy-transfer processes from the optically excited semiconductor nanowire to the plasmon oscillations in the surrounding metal film are studied with ultrafast spectroscopic techniques.

Results from our studies will provide a new understanding of light-electron-waves in the novel and unique metal-semiconductor environment. Hopefully, we will open new prospects for designing low-loss or loss-free plasmonic devices. Ideally we want to enable new and important applications in information technologies, biological sensing and national defense. We further envision our investigations having a strong impact in other research fields: for instance, by utilizing the biocompatibility of our hybrid organic/metal structures, by enhancing the light emission in light-emitting diodes and laser structures or by improving light harvesting in photovoltaic devices.

Hans-Peter Wagner has received research funding from the National Science Foundation in the past.

Masoud Kaveh-Baghbadorani receives funding from University of Cincinnati Graduate Scholarship, The Mary J. Hanna and Henry Laws Research Fellowships.

Authors: The Conversation

Read more http://theconversation.com/plasmonics-revolutionizing-light-based-technologies-via-electron-oscillations-in-metals-38697

Writers Wanted

COVID has left Australia's biomedical research sector gasping for air

arrow_forward

How Australian vice-chancellors' pay came to average $1 million and why it's a problem

arrow_forward

The Conversation
INTERWEBS DIGITAL AGENCY

Politics

Prime Minister Interview with Ben Fordham, 2GB

BEN FORDHAM: Scott Morrison, good morning to you.    PRIME MINISTER: Good morning, Ben. How are you?    FORDHAM: Good. How many days have you got to go?   PRIME MINISTER: I've got another we...

Scott Morrison - avatar Scott Morrison

Prime Minister Interview with Kieran Gilbert, Sky News

KIERAN GILBERT: Kieran Gilbert here with you and the Prime Minister joins me. Prime Minister, thanks so much for your time.  PRIME MINISTER: G'day Kieran.  GILBERT: An assumption a vaccine is ...

Daily Bulletin - avatar Daily Bulletin

Did BLM Really Change the US Police Work?

The Black Lives Matter (BLM) movement has proven that the power of the state rests in the hands of the people it governs. Following the death of 46-year-old black American George Floyd in a case of ...

a Guest Writer - avatar a Guest Writer

Business News

Nisbets’ Collab with The Lobby is Showing the Sexy Side of Hospitality Supply

Hospitality supply services might not immediately make you think ‘sexy’. But when a barkeep in a moodily lit bar holds up the perfectly formed juniper gin balloon or catches the light in the edg...

The Atticism - avatar The Atticism

Buy Instagram Followers And Likes Now

Do you like to buy followers on Instagram? Just give a simple Google search on the internet, and there will be an abounding of seeking outcomes full of businesses offering such services. But, th...

News Co - avatar News Co

Cybersecurity data means nothing to business leaders without context

Top business leaders are starting to realise the widespread impact a cyberattack can have on a business. Unfortunately, according to a study by Forrester Consulting commissioned by Tenable, some...

Scott McKinnel, ANZ Country Manager, Tenable - avatar Scott McKinnel, ANZ Country Manager, Tenable



News Co Media Group

Content & Technology Connecting Global Audiences

More Information - Less Opinion